最完整的土壤知识
(一)土壤及其性状
1、土壤的概念:苏联土壤学家威廉斯指出:“土壤是地球陆地上能够生长绿色植物的疏松表层。”这一定义良好地代表了土壤的一般功能和特性。土壤之理所当然能生长绿色植物,是因为它具有一种独特的性质——肥力。土壤这样的特殊本质,就是土壤不同之处于其它任何事物的依据。土壤肥力虽与土壤物质组成有关联,但关键受土壤性状的关系。
2、土壤的关键性状
(1)土壤质地:土壤的泥砂比例叫作土壤质地。直径小于0.01mm(毫米)的土粒称泥;直径为1—0.01mm(毫米)的土粒称砂;直径大于1mm(毫米)的土粒称砾石。按照土壤质地不相同将土壤包括砂质土、粘质土和壤质土。
①砂土:这类土壤含砂粒在80%以上,土粒间大孔隙多,土壤容积比重在1.4—1.7克/厘米3之间,因而,土壤昼夜温差大,通透性好,有机质矿质化快,易耕作,但保水保肥能力差,遇水易板结,肥力大多数较低。种植作物要增施有机肥和少量多次地勤追化肥。
②粘土:这样的土壤含泥粒在60%以上,土壤比重在2.6—2.7克/厘米3之间。土壤硬度大,粘着性、粘结性和可塑性基本都强,故适耕性差。土壤保水保肥力强,潜在肥力较高。但土紧难耕,土温低,肥效不易发挥。因而,水田要要注意管水,提高泥温,多施腐熟性有机肥和热性化肥。
③壤土:这样的土壤泥砂比例适中,大多数砂粘占40—55%,粘(泥)粒占45—60%。土壤容重1.1—1.4克/厘米3之间。质地轻松,通气透水,保水保肥力强,耕作爽犁。因而,它是水、肥、气、热协调的优质土壤。
(2)土壤结构:土壤形成团聚体的性能,叫作土壤的结构性。凡土粒胶结成直径为1—10mm(毫米)的团粒状土壤结构,叫作团粒结构。这是土壤结构中最好的一种。其形成条件有两个:
一是胶结物质。土壤中的胶结物质最关键是粘粒,新形成的腐殖质和微生物的菌丝及分泌物。这些物质与钙胶结在一块,就形成了具有多孔性和养分丰富、不易被水泡散的水稳性团粒状土壤结构。因而,增施钙质肥料(石灰、石膏)有利团粒结构形成。
二是外力挤压作用。凡是作物根系穿插、干湿交替、冻融交替和耕作基本都对粘聚起来的土粒造成必需的外力挤压作用,使之散碎成必需大小的团粒。深耕、免耕、滴灌、水旱轮作,基本都有利土壤团粒结构的形成。
团粒结构优越性的具体表现症状:
其一,能协调土壤水分和空气的矛盾。因为团粒间有大孔隙,团粒内又有毛细管孔隙,这样就有利于水分、养分、空气三者间的与此同时有。那么就会土壤水、肥、气、热状况协调。
其二,具有良好的养分状况。随着水、气矛盾的解决,也解决了水分与养分的矛盾。因团粒表层常为好气分解,团粒内部又为嫌气分解,前者有利于土壤养分释放给作物吸收,后者有利土壤腐殖质累积,养分保蓄。矛盾协调后的水分与养分就能与此同时而不断地供给作物需要。
其三,使土壤松软适度。具有团粒结构的土壤,疏松多孔,犁耕阻力小,耕作省力,耕翻质量好;土壤细碎而均匀,既不紧硬,又不起浆浮泥;干燥不开大坼,泡田渗漏损失也小。
(3)土壤吸收性能。土壤有吸收固体、液体和气体的能力。其吸收方式包括五种。
①机械吸收作用:这指的是土壤将大于土壤孔隙而悬浮于溶液中(如骨粉、饼肥、磷矿粉及粪便残渣等)的微细颗粒机械地阻留下来来,使之不随土壤中渗水而流走的一种作用。因为土壤颗粒愈小,排列愈紧密,土壤孔隙愈细,因而机械吸收作用就越强,则土壤保肥性能就好。这样的作用对新改稻田、新水库、塘坝有利提高保水蓄水的功能。
②物理吸收作用:它指的是土壤胶体依靠其表层能将分子态养分吸附在表层上,而胶体与被吸附物不起任何化学反应的一种作用。这样的作用,因为对分子态养分有维持能力,因而,土壤中的氨气、尿素、氨基酸等分子态氮那么就会缩短挥发损失。平常在施用易挥发的铵态氮肥时要求复好土就是这一道理。
③化学吸收作用:这指的是土壤中可溶性养分(如某些离子与带不相同电荷的离子发生化学作用),由纯化学作用造成不溶性沉淀而固定在土壤内的作用。这样的作用,虽然有缩短可溶性养分的流失,但被固定下来的养分就难以在被作物吸收借助于,故下降了养分的借助于率。因而,把磷肥集中施或与有机肥混和施,制成颗粒球肥施和根外喷施,就是防止化学吸收作用的发生,缩短土壤对磷酸的固定。
④代换吸收作用:这又叫物理化学吸收作用。它指的是土壤胶体表层吸着非常多与它带相反电荷离子的与此同时,其表层上又有等当量的同电荷的其它离子被代换出来的作用。我觉得质是一种离子(阳离子或阴离子)代换流程,是土壤胶体所吸收的离子和土壤溶液中的离子在相互代换。理所当然这样的作用是可逆的,即胶体所吸收的离子,又能从新被其它离子代换到溶液中去。那么就会,这样的作用在调节土壤中可溶性养分的保蓄和供应,具有至关重要意义。
⑤生物吸收作用:这指的是生活在土壤中的微生物及作物根系和动物等,吸收养分构成有机体而保留在土壤中的一种性能。因为生物是按照自身需要,从土壤溶液中选吸收各类可溶性养分,形成有机体。当它们死亡后,有机残体又逐渐分解,把营养物质释放出来,供作物吸收借助于。理所当然生物吸收作用,能维持养分,积累养分,提高土壤肥力。
(4)土壤酸碱度。土壤酸碱度指的是土壤溶液中有的H+和OHˉ的量。一般情况下用PH值代表。PH=7时是中性反应,这个时候溶液中H+和OHˉ数量相等;pH小于7代表是酸性反应,这个时候H+多于OHˉ;H大于7代表是碱性反应,这个时候H+少于OHˉ。土壤酸碱度按其PH值的大小包括七级:
PH<4.5 强酸性
PH4.5—5.5 酸性
PH5.5—6.5 微酸性
PH6.5—7.5 中性或近于中性
PH7.5—8.5 微碱性
PH8.5—9.5 碱性
PH>9.5 强碱性
①土壤酸碱性造成原因:土壤之理所当然有酸碱性,关键是土壤中有酸碱物质。H+来源关键是土壤胶体上吸附的H+和Al+3;其次是二氧化碳溶于水形成碳酸解离的结果:
H2CO3=H++HCO3ˉ, HCO3ˉ= H++CO3ˉ
除此之外,还有机质转化流程中,分解造成的有机酸(丁酸、草酸、柠檬酸等)、岩石风化流程中,化学变化(如含硫矿物氧化)成的酸以及施用肥料加进的酸性物质[如(NH4)2SO4、NH4Cl],当NH4+被作物吸收后,常遗留在土壤中的酸根(SO4-2,Clˉ)基本都能使土壤酸性添加。
OHˉ的来源关键是土壤中碳酸钠、碳酸氢钠等盐类水解以及土壤胶体上含的代换性钠形成强碱转化结果。
例如:Na2CO3+2H2O 2NaOH+H2CO3
NaHCO3+H2O NaOH+H2CO3
②作物对土壤酸碱度的适应能力:强酸性与强碱性土壤基本都不利于作物生长。不相同的作物要求土壤酸碱度不相同。如茶树只适宜在酸性土壤上生长,像映山红、马尾松、杨梅、蒜盘子等,就是酸性土壤的指示植物;而天竺、圆叶包柏、柏木又是石灰性土壤的指示植物。
除此之外,土壤酸碱度对营养元素的有效果性及有益微生物的活动基本都有非常大的关系,土壤过酸过碱还关系土壤良好结构的形成(现不作更多细节阐述),这些无疑的基本都立刻或间接地关系着作物的生长和发育。
(5)土壤缓冲性能:在土壤加入酸、碱物质后,土壤所具有的抵抗土壤溶液酸化或碱化的能力,叫作土壤缓冲性能。土壤胶体上代换性阳离子有,对酸碱有缓冲作用。
这是因为土壤胶体上代换性阳离子(盐基离子或H+)被代换到溶液中生成了中性盐或H2O,可以使土壤的酸碱度频繁维持稳定,为作物和微生物生长发育供给良好的环境条件,与此同时也为指导施肥供给依据。向土壤中施用有机肥料、泥土类(塘泥)肥料、石灰和种植绿肥等,基本都是提高土壤缓冲性能的有效果措施。
(二)土壤肥力及其因素
1、土壤肥力种类:土壤肥力就指的是土壤能够满足作物生长发育所一定的水分、养分、空气、热量的能力而称之。土壤肥力包括自然肥力和人为肥力;潜在肥力和有效果肥力。所谓自然肥力,指的是自然土壤在未开垦借助于以前所具有的肥力;人为肥力指的是大家对土壤做好耕种、施肥、灌溉等农业技术措施而创造出来新的肥力。
因而,任何土壤,耕作栽培作物愈久,可使用的农业技术措施愈完善,人为肥力所占比重就越大。理所当然说,土壤是劳动的对象,又是劳动的产物。所谓有效果肥力,指的是栽培作物时,被当季作物吸收借助于的那部份肥力;潜在肥力指的是在土壤中有,不可以立即被当季作物借助于的有些肥力。潜在肥力和有效果肥力,在得当的农业技术措施实施下,是可以相互转化的。
2、土壤肥力因素:土壤水分、养分、空气和溫度,叫作土壤肥力四大因素。土壤肥力的高低,不仅仅是受每个肥力因素数量适度与否的关系,而关键取决于水、肥、气、热之间在必需情况下协调程度的上下。因而,必须研究熟练掌握土壤各个肥力因素状况和它们的相互联系。
(1)土壤水分状况。“水利是农业的命脉”,开始,作物的生长发育需要广泛的水。这是由于:大多数作物要获得一分产量,必须消耗500—一千分的水,这些水基本都是从土壤中供给;作物吸收的养分也是要溶于水后才能被借助于;土壤微生物的活动以及土壤养分的分解和转化基本都需要水。
其次,水分立刻对土壤空气与热量状况起着制约的作用,与此同时还关系着土壤的胀缩性、粘着性、粘结性和耕性等性质。这说明,土壤水分不但为作物生长发育之一定,并且还可以通过调节土壤水分状况来使肥、气、热联系协调。
①土壤水分类型:土壤水分按其受作用力的不相同,大多数包括三种:
A、束缚水:这是在土粒表层引力作用下,紧紧地束缚在土粒周围的水分而称之。这样的水在土壤中移动极慢,且有一部份在土粒表层不移动,理所当然非常难被作物吸收借助于。当土壤含水量到了仅有束缚水量时,作物就出来凋萎现象。因为土粒愈细,吸住的水分愈多,理所当然粘土的束缚水量大于砂土。
B、毛管水:这是在土壤毛细管引力作用下,维持在曲折微细的土壤孔隙里的水而称之。这样的水能沿着毛细管孔隙向左右上下的各个方向移动。其移动规律是从湿度大的土层移向湿度小的土层。它是土壤中最适于作物吸收借助于的水分。因为水中溶有各类作物的养分,理所当然又为作物供给了营养物质。
油砂土、潮砂土,出来的“回潮”或“回润”现象,就是毛管水的升高运动,把地下水引到耕层的缘故。但是毛管水运动会带来地表蒸发不断发生,引起土壤水分损失,理所当然生产中常采取中耕松土,这有切断土壤毛细管,缩短土壤水分蒸发的作用。
C、重力水:这是在土壤水分含量超过土壤毛管力的作用范围时,过多的水受重力的关系向下渗漏,这样的渗漏水叫作重力水。它是水稻最有效果的水分。尽管渗漏作用有引起漏水漏肥的现象,但不论对水田還是旱土,适度的渗漏是必要的,它有利于土壤空气的更新及有损害还原物质的向下移动和淋失。
②水稻土壤水分状况:水稻土壤在淹水时期,耕作层水分呈现过饱和状态,因为重力作用,不断地垂直渗漏。按照水分的垂直渗漏特点,水稻土分成3个类型。
A、地下水型:这类水稻土,地下水位高(地下水位距地表在60厘米以内),排水不良,灌溉水层和地下水相连,通透性能差,泥温低,如冷浸田、滂泥田和深脚鸭屎泥土属之。
B、地表水型:这类水稻土,地下水位很深(超过150厘米),灌溉水下渗不可以到了地下水层,排水虽良好,但不耐干旱。如高岸田、天水田和大部份梯田属之。
C、良水型:这类水稻土,地下水位在60—150厘米之间,灌溉水层与地下水位不相连接,但土壤毛管水可以左右流通,这类田大多数分布在垅田上面或一排、二排田属之。
三种类型水稻土,以良水型的土壤肥力最好,大多数是高产稳产稻田。适度渗漏对水稻土是必要的,它有利于土壤空气的更新和有毒物质的排除。当然也不一定可过大,以免引起养分淋失。大多数在灌1寸水能保存三天为限,即渗漏量为0.5—1.0厘米/24小时最适度。
(2)土壤空气状况:土壤空气对土壤微生物活动和养分转化有紧密联系,对作物根系发育亦有关系。作物生长发育各个时期对土壤空气基本都有必需的要求。
①土壤空气的成分:土壤中的空气,一部份是由大气进到;一部份是由土壤中生物化学流程所造成。因为土壤中生物(作物根系和微生物)生命活动的关系和有机质的分解作用,不断地消耗氧气和造成二氧化碳及其它气体,致使土壤空气与大气的成分有显著的不同之处:土壤空气中氧气含量低于大气,而二氧化碳的含量则高于大气;除此之外土壤空气频繁为水汽所饱和,大气湿度大多数只达50—90%;土壤空气有时还含有少量的还原性气体,如甲烷、氢气、氨和硫化氢。
②水稻土空气状况的特点:水稻土壤因为季节性或常年淹水,土壤空气与大气之间的气体交换被水层隔绝,常处于还原状态。作物生命活动消耗的氧,只能靠作物茎叶的输氧组织将大气中的氧输入根部,由根在将氧分秘出来,引起根际微域氧化环境,避免稻根被周围还原性物质的毒害。这正是水稻能在缺氧环境中生长的秘密所在。
理所当然水田土壤空气状况的特点具有清楚的层次性和微域性。在耕作层表层数mm(毫米)至1厘米处为氧化层,因铁成高价化合物状况,土色呈黄褐或黄棕色。在氧化层以下的耕作层为还原层,铁成低价化合物状况,土色呈青灰或兰灰色。但在靠近根际周围的土壤,常因水稻根群的泌氧作用而出来锈斑和锈纹。
③土壤空气在土壤肥力中的地位:土壤空气供给作物根系呼吸作用所需要的氧。如缺氧,根系发育受到关系,吸水吸肥机能减弱,甚至死亡。特别种子发芽期及幼苗期更加如此。水稻虽具通气组织,土壤也应具有必需的通气性能,以利稻根生长。
除此之外,土壤空气状况关系土壤微生物的活动和养分的转化。缺氧微生物活动以嫌气性为主,使有机质分解缓慢,引起养分不足,甚至导致氮素损失,与此同时,还造成不利于作物营养的还原性有毒物质,如乙酸、丁酸、硫化氢等。除此之外,土壤通气不良,有利于病菌滋生,导致作物感染病害,关系作物生长,下降产量。因而,稻田常使用排水露田和晒田做好调节。
(3)土壤温热状况:土壤溫度对作物生育和土壤中微生物活动以及各类养分的转化、土壤水分蒸发和运动基本都有非常大关系。作物从播种到成熟基本都需要必需的溫度条件,如大麦、小麦在1—2℃时就能发芽,而水稻、棉花要在10—12℃时才发芽。理所当然不相同作物的适时播种,就是由土壤溫度来决定的。大多数土壤微生物生活,以土温25℃—37℃为适宜,最低是5℃,最高不超过45℃—50℃。土温过低,微生物活动减弱,甚至完全停止,有机质难于分解,有效果养分缺乏。冷浸田就是如此,理所当然要排除冷浸水,增施猪牛栏粪、石灰、草木灰和火土灰,以提高土温。
①关系土壤溫度的因素:溫度是热的表现症状。土壤热量关键来源于太阳辐射热,其次是微生物对有机质的分解作用,放出必需的热量,使土温增高。
关系土壤溫度变化的因素非常多,有纬度、海拨高度、地形和坡向。但关键是土壤本身的土壤热特性,如土壤热容量、导热性、吸热性和散热性等。特别是热容量和导热性是决定土温最至关重要的内因。
A、土壤热容量:每1立方厘米的干土增温1℃时所需的热量卡数(卡/立方厘米/度),叫作土壤热容量。水的热容量为1;空气为0.0003;土粒介于二者之间,约为0.5—0.6。因为土壤固体部分变化很小,因而,土壤热容量的大小关键决定于土壤水分和空气的数量,凡水多气少的土壤,热容量就大,增温慢,冷却也慢,溫度变化小;反之,土温变化就大。理所当然稻田管理,早春白天排水增温,夜间灌水保温;热天运用深灌降温。
B、土壤导热性:土壤导热指的是从溫度较高的土层向溫度较低的土层传导热量的性能。其大小与土壤固、液、气三相组成比例有关。土壤矿物质的导热性为空气的100倍;水为空气的25倍;有机质为空气的5倍;空气几乎不传热。由此可知,土壤导热性的大小取决于空气和水分之间的同比比例。因而,中耕松土有减小土壤导热性,使表土溫度不易向下传递,深土溫度不易向上散失。
②土温变化的调节:土壤溫度随气象因子的关系而频繁变化,以便满足作物生长发育的需要,必须围绕早春添加土温,热天下降土温,秋冬维持土温的目标,采取行之有效果的措施。
A、合理灌溉:早春寒潮期间多灌水、灌深水,防止土温骤然降低,提高幼苗抵御低温能力;大多数天气期间使用浅水间灌,升温通气,促进作物生长。热天以提高土壤散热性为主,采取短期灌深水和频繁性的灌水露田相结合,到了散热、通气、供水的目的,促进作物生长发育。秋冬时节,大多数结合施肥,推行霜前灌水,以减轻作物冻害。
B、合理施肥:在保障施足肥的前提下,增施有机肥,如火土灰、腐熟的猪牛栏淤等等,来提高土壤溫度。其一,加深土色,添加土壤吸热力;其二,有机肥料分解中放出热量;其三,土壤疏松,添加空气容量,下降土壤热容量。除此之外,还立刻提高作物的营养。
C、实行覆盖:早春和秋冬低温季节,运用草木灰、切碎的草子(紫云英)、干(湿)牛粪、苔藓、塑料薄膜等覆盖地面,能提高土壤吸热,缩短散热,有保温防冻作用;夏秋高温干旱期间,使用稻草或其它作物秸秆覆盖地面,有遮荫防晒,下降土温的作用,与此同时,还能缩短水分蒸发和消灭杂草。
D、中耕松土:这有利于土壤空气容量添加,缩短表土热量向下传导和下层土温升高的作用。因而,早春,对粘重紧实土壤做好中耕松土来提高土温,加快种子萌芽;热天中耕松土,缓和根系活动层土温太高,促进作物根系生长。
除此之外,借助于风障、防风林、熏烟及施用化学增温剂等,均可调节土壤溫度,可以因地制宜做好应用。
(4)土壤养分状况:作物需要的养分绝大部份来自土壤,但是,土壤里的养分绝大部份有于难溶性的矿物质中和有机质中,为迟效性,作物难以吸收借助于。而能被当季作物吸收借助于的离子态速效养分,只占土重0.005—0.1%,有于水溶液中和被吸附在土壤胶体表层上。但是,这样的迟效养分和速效养分在必需情况下能够相互转化。
①有机碳化合物的转化:土壤中的纤维素、淀粉、双糖、单糖以及脂肪等有机物,基本都不含氮。它们在土壤中转化有两种状况:
一是通气良好时,受好气性细菌和真菌作用,迅速分解,最后造成CO2和H2O,并放出广泛的热。这样的热是土壤生物化学作用的原动力和土壤微生物生命活动所需能量的来源。CO2是作物做好光合作用的至关重要原料。
二是通气不良时,受嫌气性细菌作用,缓慢分解,仅仅是放出少量的热和CO2,而累积广泛的有机酸(乙酸、丁酸)、甲烷、氢等还原性物质,障碍作物生长发育。如水稻“翻秋”或“溶蔸”现象,就是丁酸所害。因而,水田翻压绿肥,结合施石灰,就是以便中和有机酸,消除稻田毒害。
②土壤中氮素的转化:土壤中有机态氮占99%以上,无机态氮不足1%;水田的全氮含量约为0.1—0.2%,无机态氮更少。作物从土壤中吸收的氮素,绝大部份由有机氮转化而来。其转化形成一般有四种:
A、氨化作用:土壤中含氮的有机物,如蛋白质、尿素和壳糖(几丁质)等在氨化细菌作用下,逐渐分解释放出氨,称之氨化作用。不论通气好坏,此流程基本都能做好。氨与土壤中的酸根结合成铵盐,为作物吸收借助于,或被土壤胶体吸附保存。
B、硝化作用:氨或铵盐在通气良好的情况下,经亚硝酸细菌、硝酸细菌等的作用,转化成硝酸的流程,叫作硝化作用。因为这样的作用是在通气良好的状况下做好,理所当然NO3-N有于旱土中,而水田中很少见。NO3-N是作物良好的有效果态养分,但不可以被土壤胶体吸附,易于随水流失,故深耕松土,维持土壤湿润,有利硝化作用和避免土壤中氨的散失。
C、反硝化作用:当土壤通气不良,并含有广泛新鲜有机质和硝酸盐的土壤中,在反硝化细菌的作用下,将硝酸盐还原成作物不可以借助于的氮气而损失,这一流程叫作反硝化作用。这样的作用对作物吸收养分和生长带来不利,务必加以阻止。稻田使用浅水间灌,露田通气和施用铵态氮肥,旱土雨后中耕松土,均可避免反硝化作用的发生。
D、生物夺氮作用:土壤中的无机态氮(如铵盐、硝酸盐)部份被微生物、杂草、土壤动物吸收借助于,合成生物机体,使土壤有效果态氮缩短,称生物夺氮作用。尤以微生物夺氮最突出,当土壤中施用广泛新鲜的、含纤维素多的有机肥和其它环境条件又适宜,微生物就广泛活动与繁殖,消耗掉土壤中有效果氮素,那么就会影响到作物氮素养分缺乏或严重不足。因而,凡秸秆还田或施用广泛未腐熟的含纤维多的有机肥料,必须配合施用适度的速效氮肥,以补冲土壤有效果氮素,供作物吸收。
但是生物夺氮作用是暂时的,直到有机肥分解那么就会停止,与此同时,微生物死亡后,氮素仍就归还给土壤,让作物吸收借助于。理所当然这与反硝化作用引起的氮素损失是完全不相同的。
③土壤中磷素的转化:大多数土壤中磷酸总量(以P2O5计算)约在0.05—0.2%之间。红黄壤仅为0.06%上下,就按此计算,这些磷也够供作物若干年丰收所需要。但是,土壤中能为作物非常好吸收借助于的水溶性磷(如Na、K、NH4等磷酸盐及磷酸一钙)和弱酸溶性磷(如磷酸二钙)很少;而多数为难溶性磷(磷酸二钙)和极难溶性磷(如磷酸铁、磷酸铝)以及有机态磷。它们需经各类转化,才能被作物吸收借助于。
土壤无机磷的转化,关键受土壤反应的关系。在强酸性土壤中,磷与铁、铝离子化合生成难溶性的磷酸铁、磷酸铝沉淀而被土壤固定;在石灰性土壤中,磷则成为磷酸三钙被土壤固定。只有当土壤反应处于中性或接近中性(PH值为6.5—7.5)的条件,磷的有效果性才提高。
土壤有机磷的转化。土壤中,有机磷化合物一般有核蛋白、核酸、卵磷脂、植素以及植物体内其他含磷化合物。它们是在土壤微生物的作用下,做好水解释放出磷酸。这样的磷酸和水解性磷相同,在土壤中在做好着各类转化,变成有效果磷酸盐供作物吸收借助于。
④土壤中钾素的转化:土壤中钾的含量与成土母质、土壤质地和有机肥料的施用联系极大。据有关资料记载,发育于紫色土、花岗岩的土壤,全钾量为2.5—5.0%;发育于第四纪红色粘土的红壤,全钾量为0.8—1.8%;而发育于石灰岩的土壤,全钾量仅0.68—1.12%。粘质土壤含钾量比砂质土壤高。
土壤中的钾,按照对作物有效果性的高低,包括四大类:
一曰水溶性钾。如KNO3、KCl、KHCO3等,可以被作物立刻吸收,但土壤中的含量却极少;
二曰代换性钾。系土壤胶体上吸附的钾,作物亦可以立刻借助于,但土壤中含量也少,仅占土壤全钾量的0.15—0.5%。一般情况下说的有效果钾,指的是水溶性钾与代换性钾的总和。但它只占土壤总钾量的1—2%;
三曰微生物活体钾。这类钾有微生物活体内,但在微生物死亡分解后,可被作物吸收借助于;
四曰矿物钾。系指矿石(钾云母、正长石)中含的钾,是矿物在钾细菌和各类酸的作用下,释放出的水溶性钾。这类钾在土壤中含量最多,占土壤含钾总量98%以上。但是,土壤中的钾和氮、磷相同,并不可以满足作物生活的需要,亦须依靠施肥来补冲。
土壤中各类类型的钾,在必需的情况下,也可相互转化。难溶性含钾矿物,在各类酸类或钾细菌的作用下,可以释放出水溶性钾。但在含粘粒多的土壤中,因为粘土具有湿胀干缩的特性,在土壤干湿交替频繁中,土壤中的水溶性钾或代换性钾被粘土矿物固定起来,成为一种不可以移动的钾,使作物根系无法吸收。